Tungsten(IV) Carbenes for the Metathesis of Olefins. Direct Observation and Identification of the Chain Carrying Carbene Complexes in a Highly Active Catalyst System

Jacky Kress, Marcel Wesolek, and John A. Osborn*

Laboratoire de Chimie Inorganique Moléculaire et de Catalyse, Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France

On addition of aluminium halides to the carbene complexes $W(CHBu^{t})(OCH_2Bu^{t})_2X_2$ conversion into highly active catalysts for olefin metathesis occurs; the nature of the initiating and propagating species in olefin metathesis has been identified by n.m.r. spectroscopy.

Tungsten carbene species have long been implicated as catalytic intermediates in the olefin metathesis reaction¹ and recent elegant mechanistic² and model studies³ have largely confirmed this supposition. We report (i) the isolation of simple carbene complexes of W^{1V} from a classical catalyst system, (ii) the nature of their interaction with Lewis acids, (iii) the high activity of these complexes as metathesis catalysts, and (iv) the *direct* observation and identification of the chain carrying carbene intermediates *during* olefin metathesis.

We have previously reported⁴ the interaction of WO(OCH₂ Bu¹)₂(CH₂R)₂ (R = Bu¹) with Lewis acids AX_n (e.g. AlX₃; X = Cl, Br) to yield the adducts W(OAX_n)(OCH₂Bu¹)₂ (CH₂R)₂. We find now that these species slowly transform in solution (CH₂Cl₂) to form the carbene complexes W(CHR) (OCH₂Bu¹)₂X₂, (AlOX)_n, and RCH₃. These surprisingly simple metal carbene complexes are relatively stable *e.g.* W(CHR)(OCH₂Bu¹)₂Br₂ can be sublimed (60 °C, 10⁻⁴ mmHg) as a pale yellow powder, which melts at -5 °C to an orange

oil. The ¹H and ¹³C n.m.r. data (Table 1) along with the presence of a single i.r.-active W–X vibration (*e.g.* at 220 cm⁻¹ for X = Br) lead us to propose structure (1) for these complexes.

These carbene complexes do not react with *cis*-pent-2-ene at 25 °C. However, addition of AlBr₃ (1 mol. equiv.) in PhCl produces an exceedingly active system which converts 10^3 mol. equiv. of *cis*-pent-2-ene into but-2-enes (*cis*: *trans* = 1:1) and hex-3-enes in less than 1 min. The use of GaBr₃ produces a similarly efficient catalyst whose lifetime exceeds 24 h.

The nature of the initiating and propagating species in these systems has been established by n.m.r. spectroscopy (1H and ¹³C) in C₆D₅Cl or CD₂Cl₂ at -30 °C. W(CHBu^t)(OCH₂Bu^t)₂ Br₂ rapidly forms a strong 1:1 adduct with AlBr₃ at -30 °C in C₆D₅Cl in which the ¹H resonance of W=CHR is shifted to δ 12.09 from δ 11.17; an analogous shift of the ¹³C resonance from 298.6 to 314.9 p.p.m. is also observed (in CD₂Cl₂). Notably however, complexation causes (i) no change in $J(C_{\alpha}-H)$ in the W(CHR) moiety nor (ii) a significant displacement of the -OCH₂R resonances in the ¹H or ¹³C n.m.r. spectra. Hence structure (2) is indicated for these complexes, where AlBr₃ is bound conventionally to a halide ligand and not to the carbene.^{3c,d} On warming this solution to -10 °C, (2) begins to be converted into W(CHBu^t)(OCH₂Bu^t)Br₃ (3) with formation of AlBr₂(OCH₂Bu^t). Pure (3) can be best produced by reaction of BBr₃ with (1) at -50 °C, and is less stable than (1) decomposing at ca. -5 °C. Complex (3) also forms a 1:1 complex with AlBr₃ (Figure 1a) for which structure (4) analogous to (2), is proposed from spectroscopic data (Table 1).

Addition of *cis*-MeCH=CHEt (*ca.* 10 mol) to a mixture of (2) and (4), warming to -10 °C for 30 s, and remeasuring the

Figure 1. ¹H N.m.r. spectrum (W=CHR) measured at -30 °C in C₆D₅Cl of (a) the *ca.* 1:1 mixture of (2) and (4) produced by treatment of (1) with AlBr_s (3 mol), warming to -10 °C for 30 s, and then recooling to -30 °C, (b) after addition of *cis* MeCH=CHEt (10 mol) at -30 °C, warming to -10 °C for 30 s, and recooling to -30 °C.

spectrum at -30 °C yielded the spectrum shown in Figure 1b. Four new carbene resonances have appeared, the original carbenes (2) and (4) ($R = Bu^t$) having decreased in intensity. The two carbenes at δ 12.40 [t, ²J(H–H) 8 Hz] and 13.40 (br. quart.) correspond, respectively, to the formation of the moieties W=CHEt and W=CHMe of structure (2). The two other resonances at δ 10.55 (t) and 11.35 (br.) correspond to the analogous carbenes in the structural series (4); the relative intensities W(CHEt): W(CHMe) = ca. 4:1 are observed in both cases. Analysis by g.c./m.s. of these solutions showed the presence of both products of initiation, [ButCH=CHMe and Bu^tCH=CHEt (ratio 1:1)], and metathesis, but-2-ene and hex-3-ene. If, alternatively, the olefin MeCH=CHPrⁱ is used in the same experiment, the doublets of W=CHPrⁱ appear at δ 12.35 (2) and 10.50 (4) as well as the broad quartets at δ 13.40 (2) and 11.35 (4) (relative intensities *ca*. 6:1).

Hence the *chain carrying carbene complexes* in their standing concentrations are observed in this highly active system and structures (2) and (4) assigned to these intermediates in which the binding of the Lewis acid is necessary for both initiation and propagation. Further, we note that (i) (4) is more active as a catalyst than (2) since the chain carrying carbenes of (4) appear before those of (2), (ii) the reactivities of the carbenes W=CHR of (2) and (4) with olefins follow the order $R = Me > Et > Pr^{1}$ with an approximate reactivity ratio in the propagation cycle of 6:1.5:1, (iii) no intermediate olefin-carbene complex is detectable although in the presence of olefin the carbenes are less prone to decomposition, and (iv) the broad nature of the W(CHMe) resonance at -30 °C results from a dynamic exchange process which at -50 °C is sufficiently slow to show a resolved quartet for this resonance.

We thank the C.N.R.S., the A.T.P. Chimie Fine, and Rhône-Poulenc for financial support.

Received, 30th December 1981; Com. 1482

References

- 1 J. L. Hérisson and Y. Chauvin, *Makromol. Chem.*, 1970, 141, 161.
- 2 R. H. Grubbs, *Prog. Inorg. Chem.*, 1978, 24, 1; R. H. Grubbs,
 P. L. Burk, and D. D. Carr, *J. Am. Chem. Soc.*, 1975, 97, 3265;
 T. J. Katz and J. McGinnis, *ibid.*, p. 1592.
- J. H. Wengrovius, R. R. Schrock, M. R. Churchill, J. R. Missert, and W. J. Youngs, J. Am. Chem. Soc., 1980, 102, 4515;
 S. M. Rocklage, J. D. Fellmann, G. A. Rupprecht, L. W. Messerle, and R. R. Schrock, *ibid.*, 1981, 103, 1440; R. R. Schrock, Acc. Chem. Res., 1979, 12, 98; F. N. Tebbe, G. W. Parshall, and G. S. Reddy, J. Am. Chem. Soc., 1978, 100, 3611;
 T. R. Howard, J. B. Lee, and R. H. Grubbs, *ibid.*, 1980, 102, 6876.
- 4 J. Kress, M. Wesolek, J. P. Le Ny, and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1981, 1039.